Search

Internal Compensation

Op amps are internally compensated to save external components and to enable their use by less knowledgeable people. It takes some measure of analog knowledge to compensate an analog circuit. Internally compensated op amps normally are stable when they are used in accordance with the applications instructions. Internally compensated op amps are not unconditionally stable. They are multiple pole systems, but they are internally compensated such that they appear as a single pole system over much of the frequency range. Internal compensation severely decreases the possible closed-loop bandwidth of the op amp.
Internal compensation is accomplished in several ways, but the most common method is to connect a capacitor across the collector-base junction of a voltage gain transistor (see Figure 7–1). The Miller effect multiplies the capacitor value by an amount approximately equal to the stage gain, thus the Miller effect uses small value capacitors for compensation.

Figure 7–1. Miller Effect Compensation

Figure 7–2 shows the gain/phase diagram for an older op amp (TL03X). When the gain crosses the 0-dB axis (gain equal to one) the phase shift is approximately 108°, thus the op amp must be modeled as a second-order system because the phase shift is more than 90°.


Figure 7–2. TL03X Frequency and Time Response Plots

This yields a phase margin of φ = 180° – 108° = 72°, thus the circuit should be very stable. Referring to Figure 7–3, the damping ratio is one and the expected overshoot is zero. Figure 7–2 shows approximately 10% overshoot, which is unexpected, but inspecting Figure 7–2 further reveals that the loading capacitance for the two plots is different. The pulse response is loaded with 100 pF rather than 25 pF shown for the gain/phase plot, and this extra loading capacitance accounts for the loss of phase margin.

Figure 7–3. Phase Margin and Percent Overshoot Versus Damping Ratio

Why does the loading capacitance make the op amp unstable? Look closely at the gain/phase response between 1 MHz and 9 MHz, and observe that the gain curve changes slope drastically while the rate of phase change approaches 120°/decade. The radical gain/phase slope change proves that several poles are located in this area. The loading capacitance works with the op amp output impedance to form another pole, and the new pole reacts with the internal op amp poles. As the loading capacitor value is increased, its pole migrates down in frequency, causing more phase shift at the 0-dB crossover frequency. The proof of this is given in the TL03X data sheet where plots of ringing and oscillation versus loading capacitance are shown.
Figure 7–4 shows similar plots for the TL07X, which is the newer family of op amps. Notice that the phase shift is approximately 100 when the gain crosses the 0-dB axis. This yields a phase margin of 80, which is close to unconditionally stable. The slope of the phase curve changes to 180/decade about one decade from the 0-dB crossover point. The radical slope change causes suspicion about the 90° phase margin, furthermore the gain curve must be changing radically when the phase is changing radically. The gain/phase plot may not be totally false, but it sure is overly optimistic.


Figure 7–4. TL07X Frequency and Time Response Plots

The TL07X pulse response plot shows approximately 20% overshoot. There is no loading capacitance indicated on the plot to account for a seemingly unconditionally stable op amp exhibiting this large an overshoot. Something is wrong here: the analysis is wrong, the plots are wrong, or the parameters are wrong. Figure 7–5 shows the plots for the TL08X family of op amps, which are sisters to the TL07X family. The gain/phase curve and pulse response is virtually identical, but the pulse response lists a 100 pF loading capacitor. This little exercise illustrates three valuable points: first, if the data seems wrong it probably is wrong, second, even the factory people make mistakes, and third, the loading capacitor makes op amps ring, overshoot, or oscillate.

Figure 7–5. TL08X Frequency and Time Response Plots

The frequency and time-response plots for the TLV277X family of op amps is shown in Figures 7–6 and 7–7. First, notice that the information is more sophisticated because the phase response is given in degrees of phase margin; second, both gain/phase plots are done with substantial loading capacitors (600 pF), so they have some practical value; and third, the phase margin is a function of power supply voltage.


Figure 7–6. TLV277X Frequency Response Plots



Figure 7–7. TLV227X Time Response Plots

At VCC = 5 V, the phase margin at the 0-dB crossover point is 60°, while it is 30° at VCC = 2.7 V. This translates into an expected overshoot of 18% at VCC = 5 V, and 28% at VCC = 2.7 V. Unfortunately the time response plots are done with 100-pF loading capacitance, hence we can not check our figures very well. The VCC = 2.7 V overshoot is approximately 2%, and it is almost impossible to figure out what the overshoot would have been with a 600 pF loading capacitor. The small-signal pulse response is done with mV-signals, and that is a more realistic measurement than using the full signal swing.
Internally compensated op amps are very desirable because they are easy to use, and they do not require external compensation components. Their drawback is that the bandwidth is limited by the internal compensation scheme. The op amp open-loop gain eventually (when it shows up in the loop gain) determines the error in an op amp circuit. In a noninverting buffer configuration, the TL277X is limited to 1% error at 50 kHz (VCC = 2.7 V) because the op amp gain is 40 dB at that point. Circuit designers can play tricks such as bypassing the op amp with a capacitor to emphasize the high-frequency gain, but the error is still 1%. Keep Equation 7–1 in mind because it defines the error. If the TLV277X were not internally compensated, it could be externally compensated for a lower error at 50 kHz because the gain would be much higher.

No comments:

Post a Comment

Main History About Op Amp