There are two types of error sources in op amps, and they fall under the general classification of dc and ac errors. Examples of dc errors are input offset voltage and input bias current. The dc errors stay constant over the usable op amp frequency range; therefore, the input bias current is 10 pA at 1 kHz and it is 10 pA at 10 kHz. Because of their constant and controlled behavior, dc errors are not considered until later chapters.
AC errors are flighty, so we address them here by developing a set of nonideal equations that account for ac errors. The ac errors may show up under dc conditions, but they get worse as the operating frequency increases. A good example of an ac error is common mode rejection ration (CMRR). Most op amps have a guaranteed CMRR specification, but this specification is only valid at dc or very low frequencies. Further inspection of the data sheet reveals that CMRR decreases as operating frequency increases. Several other specifications that fall into the category of ac specifications are output impedance, power-supply rejection-ratio, peak-to-peak output voltage, differential gain, differential phase, and phase margin.
Differential gain is the most important ac specification because the other ac specifications are derived from the differential gain. Until now, differential gain has been called op amp gain or op amp open loop gain, and we shall continue with that terminology. Let the data sheet call it differential gain.
As shown in prior chapters, when frequency increases, the op amp gain decreases and errors increase. This chapter develops the equations that illustrate the effects of the gain changes. We start with a review of the basic canonical feedback system stability because the op amp equations are developed using the same techniques.
Amplifiers are built with active components such as transistors. Pertinent transistor parameters like transistor gain are subject to drift and initial inaccuracies from many sources, so amplifiers being built from these components are subject to drift and inaccuracies. The drift and inaccuracy is minimized or eliminated by using negative feedback. The op amp circuit configuration employs feedback to make the transfer equation of the circuit independent of the amplifier parameters (well almost), and while doing this, the circuit transfer function is made dependent on external passive components. The external passive components can be purchased to meet almost any drift or accuracy specification; only the cost and size of the passive components limit their use.
Once feedback is applied to the op amp it is possible for the op amp circuit to become unstable. Certain amplifiers belong to a family called internally compensated op amps; they contain internal capacitors that are sometimes advertised as precluding instabilities.
Although internally compensated op amps should not oscillate when operated under specified conditions, many have relative stability problems that manifest themselves as poor phase response, ringing, and overshoot. The only absolutely stable internally compensated op amp is the one lying on the workbench without power applied! All other internally compensated op amps oscillate under some external circuit conditions.
Noninternally compensated or externally compensated op amps are unstable without the addition of external stabilizing components. This situation is a disadvantage in many cases because they require additional components, but the lack of internal compensation enables the top-drawer circuit designer to squeeze the last drop of performance from the op amp. You have two options: op amps internally compensated by the IC manufacturer, or op amps externally compensated by you. Compensation, except that done by the op amp manufacturer, must be done external to the IC. Surprisingly enough, internally compensated op amps require external compensation for demanding applications.
Compensation is achieved by adding external components that modify the circuit transfer function so that it becomes unconditionally stable. There are several different methods of compensating an op amp, and as you might suspect, there are pros and cons associated with each method of compensation. After the op amp circuit is compensated, it must be analyzed to determine the effects of compensation. The modifications that compensation have on the closed loop transfer function often determine which compensation scheme is most profitably employed.
No comments:
Post a Comment